
CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 1

ACMT Group of Colleges

Polytechnic- 2rd Year/ 4th Semester

Operating Systems Notes

 By, Shivani Gupta (CS Department)

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 2

UNIT -1
COMPUTER SYSTEM AND OPERATING SYSTEM

OVERVIEW

OVER VIEW OF OPERATING SYSTEM
What is an Operating System?
A program that acts as an intermediary between a user of a computer
and the computer hardware Operating system goals:

Execute user programs and make solving
user problems easier Make the computer
system convenient to use
Use the computer hardware in an efficient manner

Computer System Structure
Computer system can be divided into

four components Hardware –
provides basic computing resources

CPU, memory,
I/O devices
Operating system

Controls and coordinates use of hardware among various applications and
users

 Application programs – define the ways in which the system resources
are used to solve the computing problems of the users

Word processors, compilers, web browsers, database
systems, video games Users

People, machines, other computers
Four Components of a Computer System

Operating System Definition

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 3

OS is a resource allocator
Manages all resources
Decides between conflicting requests for efficient
and fair resource use OS is a control program
Controls execution of programs to prevent errors and
improper use of the computer No universally accepted
definition
Everything a vendor ships when you order an operating

system” is good approximation But varies wildly
 “The one program running at all times on the computer” is the kernel.
Everything else is either a system program (ships with the operating
system) or an application program

Computer Startup
bootstrap program is loaded at power-up or reboot
Typically stored in ROM or EPROM, generally known as firmware
Initializes all aspects of system
Loads operating system kernel and starts execution

Computer System Organization
Computer-system operation
One or more CPUs, device controllers connect through common bus
providing access to shared memory Concurrent execution of CPUs and
devices competing for memory cycles

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 4

Computer-System Operation
I/O devices and the CPU can execute concurrently
Each device controller is in charge of a
particular device type Each device
controller has a local buffer
CPU moves data from/to main memory
to/from local buffers I/O is from the device
to local buffer of controller
Device controller informs CPU that it has finished its operation by causing
An interrupt

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine generally,
through the interrupt vector, which contains the addresses of all the
service routines
Interrupt architecture must save the address of the interrupted instruction
Incoming interrupts are disabled while another interrupt is being processed
to prevent a lost interruptnA trap is a software-generated interrupt caused
either by an error or a user request

 An operating system is
interrupt driven Interrupt
Handling

The operating system preserves the state of the CPU by storing
registers and the program counter Determines which type of interrupt
has occurred:
polling

vectored interrupt system
Separate segments of code determine what action should be taken for each
type of interrupt

Interrupt Timeline

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 5

I/O Structure
After I/O starts, control returns to user program only
upon I/O completion Wait instruction idles the CPU
until the next interrupt
Wait loop (contention for memory access)
At most one I/O request is outstanding at a time, no
simultaneous I/O processing After I/O starts, control returns
to user program without waiting for I/O completion System
call – request to the operating system to allow user to wait for
I/O completion
Device-status table contains entry for each I/O device indicating its type,
address, and state Operating system indexes into I/O device table to
determine device status and to modify table entry to include interrupt

Direct Memory Access Structure

Used for high-speed I/O devices able to transmit information at close to
memory speeds
Device controller transfers blocks of data from buffer storage directly to
main memory without CPU intervention

 Only one interrupt is generated per block, rather than the one interrupt per
byte

Storage Structure
Main memory – only large storage media that the CPU can access directly
Secondary storage – extension of main memory that provides large
nonvolatile storage capacity Magnetic disks – rigid metal or glass
platters covered with magnetic recording material
Disk surface is logically divided into tracks, which are subdivided into
sectors
The disk controller determines the logical interaction between the device
and the computer

Storage Hierarchy
Storage systems organized
in hierarchy Speed
Cost
Vol
atilit
y

Caching – copying information into faster storage system; main memory can be
viewed as a last cache for

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 6

secondary storage

Caching
Important principle, performed at many levels in a computer (in hardware,
operating system, software) Information in use copied from slower to
faster storage temporarily
Faster storage (cache) checked first to determine if
information is there If it is, information used
directly from the cache (fast)
If not, data copied to cache and
used there Cache smaller than
storage being cached Cache
management important design
problem Cache size and
replacement policy

Computer-System Architecture

Most systems use a single general-purpose processor
(PDAs through mainframes) Most systems have special-
purpose processors as well
Multiprocessors systems growing in
use and importance Also known as
parallel systems, tightly-coupled

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 7

systems
Advantages include

1.Increased
throughput
2.Economy of
scale
3. Increased reliability – graceful

degradation or fault tolerance Two types
1. Asymmetric
Multiprocessing
2.Symmetric
Multiprocessing

Clustered Systems

Like multiprocessor systems, but multiple
systems working together Usually sharing
storage via a storage-area network (SAN)
Provides a high-availability service which

survives failures Asymmetric clustering
has one machine in hot-standby mode
Symmetric clustering has multiple nodes running

applications, monitoring each other Some clusters are for
high-performance computing (HPC)

Applications must be written to use parallelization
Operating System Structure

Multiprogramming needed
for efficiency
Single user cannot keep CPU and I/O devices busy at all times
Multiprogramming organizes jobs (code and data) so CPU
always has one to Execute A subset of total jobs in system is
kept in memory
One job selected and run via job scheduling
When it has to wait (for I/O for example), OS switches to another job
Timesharing (multitasking) is logical extension in which CPU switches
jobs so frequently that users can interact with each job while it is running,
creating interactive computing

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 8

Response time should be < 1 second
Each user has at least one program executing
in memory [process If several jobs ready to
run at the same time [CPU scheduling
If processes don’t fit in memory, swapping moves

them in and out to run Virtual memory allows execution
of processes not completely in memory Memory Layout
for Multiprogrammed System

Operating-System Operations

Interrupt driven by hardware
Software error or request creates exception or trap
Division by zero, request for operating system service
Other process problems include infinite loop, processes modifying each
Other or the operating system
Dual-mode operation allows OS to protect itself and other system
components
User mode and
kernel mode Mode
bit provided by
hardware

Provides ability to distinguish when system is running
user code or kernel code Some instructions designated as
privileged, only executable in kernel mode System call
changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode
Timer to prevent infinite loop / process
hogging resources Set interrupt after
specific period
Operating system
decrements counter
When counter zero
generate an interrupt
Set up before scheduling process to regain control or terminate program that
exceeds allotted time

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 9

Unit- 1

OPERATING SYSTEM FUNCTIONS

Process Management
 A process is a program in execution. It is a unit of work within the
system. Program is a passive entity, process is an active entity.
Process needs resources to
accomplish its task CPU,
memory, I/O, files
Initialization data
Process termination requires reclaim of any reusable resources
Single-threaded process has one program counter specifying location
of next instruction to execute Process executes instructions sequentially,
one at a time, until completion
Multi-threaded process has one program counter per thread
Typically system has many processes, some user, some operating system
running concurrently on one or more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads
Memory management activities
Keeping track of which parts of memory are currently being
used and by whom Deciding which processes (or parts
thereof) and data to move into and out of memory Allocating
and deallocating memory space as needed

Storage Management
OS provides uniform, logical view of
information storage Abstracts physical
properties to logical storage unit - file
Each medium is controlled by device (i.e., disk drive, tape drive)
Varying properties include access speed, capacity, data-transfer rate,
access method (sequential or random)
File-System management
Files usually organized into directories
Access control on most systems to determine who can access what
OS activities include

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 10

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or data
that must be kept for a “long” period of time
Proper management is of central importance
Entire speed of computer operation hinges on disk subsystem and its
algorithms

I/O Subsystem

One purpose of OS is to hide peculiarities of hardware
devices from the user I/O subsystem responsible for
Memory management of I/O including buffering (storing data temporarily
while it is being transferred), caching (storing parts of data in faster storage
for performance), spooling (the overlapping of output of one job with
input of other jobs)
General device-driver
interface Drivers for
specific hardware
devices

Protection and Security
Protection – any mechanism for controlling access of processes or users to
resources defined by the OS
Security – defense of the system against internal and external attacks

Huge range, including denial-of-service, worms, viruses,
identity theft, theft of service Systems generally first
distinguish among users, to determine who can do what
User identities (user IDs, security IDs) include name and
associated number, one per user User ID then associated with all
files, processes of that user to determine access control
Group identifier (group ID) allows set of users to be defined and controls
managed, then also associated with each process, file

 Privilege escalation allows user to change to effective ID with more rights
Dumb terminals supplanted by smart PCs
Many systems now servers, responding to requests

generated by clients Compute-server provides an

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 11

interface to client to request services (i.e. database) File-
server provides interface for clients to store and retrieve
files

Peer-to-Peer Computing

Another model of distributed system
P2P does not distinguish
clients and servers Instead all
nodes are considered peers
May each act as client,
server or both Node must
join P2P network

Registers its service with central lookup service on network, or
Broadcast request for service and respond to requests for service via
discovery protocol

 Examples include Napster and Gnutella
Web-Based Computing

Web has become
ubiquitous PCs
most prevalent
devices
More devices becoming networked to allow web access
New category of devices to manage web traffic among similar servers: load
balancers
Use of operating systems like Windows 95, client-side, have evolved
into Linux and Windows XP, which can be clients and servers

Open-Source Operating Systems

Operating systems made available in source-code format rather

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 12

than just binary closed-source Counter to the copy protection and
Digital Rights Management (DRM) movement
Started by Free Software Foundation (FSF), which has “copyleft” GNU
Public License (GPL) Examples include GNU/Linux, BSD UNIX
(including core of Mac OS X), and Sun Solaris

Operating System Services
One set of operating-system services provides functions
that are helpful to the user: User interface - Almost all
operating systems have a user interface (UI)

Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)
I/O operations - A running program may require I/O, which may involve a
file or an I/O device

 File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

A View of Operating System Services

Operating System Services

 One set of operating-system services provides functions that are helpful to
the user

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 13

Communications – Processes may exchange information, on the same
computer or between computers over a network Communications may be
via shared memory or through message passing (packets moved by the
OS)

 Error detection – OS needs to be constantly aware of possible errors May
occur in the CPU and memory hardware, in I/O devices, in user program
For each type of error, OS should take the appropriate action to ensure
correct and consistent computing Debugging facilities can greatly enhance
the user’s and programmer’s abilities to efficiently use the system

 Another set of OS functions exists for ensuring the efficient operation of
the system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and
file storage) may have special allocation code, others (such as I/O devices)
may have general request and release code
Accounting - To keep track of which users use how much and what kinds
of computer resources Protection and security - The owners of
information stored in a multiuser or networked computer system may want
to control use of that information, concurrent processes should not
interfere with each other
Protection involves ensuring that all access to system resources is controlled
Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

User Operating System Interface - GUI

User-friendly desktop
metaphor interface Usually
mouse, keyboard, and
monitor Icons represent files,
programs, actions, etc
Various mouse buttons over objects in the interface cause various actions
(provide information, options, execute function, open directory (known as a
folder)

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 14

Bourne Shell Command Interpreter

The Mac OS X GUI

System Calls

Programming interface to the services
provided by the OS Typically written in
a high-level language (C or C++)
Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call usenThree most common
APIs are Win32 API for Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and Mac OS X), and
Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?(Note that the system-call names used
throughout this text are generic)

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 15

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring.

The UNIX OS consists of two
separable parts Systems
programs
The kernel

Consists of everything below the system-call interface and above
the physical hardware Provides the file system, CPU scheduling,
memory management, and other operating-system

functions; a large number of functions for one level
Layered Operating System

Micro kernel System Structure

More
secure
Detri
ments:
Performance overhead of user space to kernel space communication

Moves as much from the kernel into “user” space
Communication takes place between user modules using message passing
Benefits:
Easier to extend a microkernel
Easier to port the operating system to new architectures
More reliable (less code is running in kernel mode)

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 16

Mac OS X Structure

Modules

Most modern operating systems
implement kernel modules Uses object-
oriented approach
Each core component is separate
Each talks to the others over
known interfaces Each is
loadable as needed within the
kernel Overall, similar to layers
but with more flexible

Solaris Modular Approach

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It
treats hardware and the operating system kernel as though they were all
hardware
A virtual machine provides an interface identical to the underlying bare
hardware
The operating system host creates the illusion that a process has its own
processor and (virtual memory) Each guest provided with a (virtual) copy
of underlying computer

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 17

UNIT -2

PROCESS MANAGEMENT

Process Concept
An operating system executes a variety of programs:
Batch system – jobs
Time-shared systems – user programs or tasks
Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must
progress in sequential fashion A process includes:

program
counter
stack
data section

Process in Memory

Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some
event to occur ready: The process is
waiting to be assigned to a processor
terminated: The process has finished
execution

Diagram of Process State

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 18

Process Control Block (PCB)

Information associated with

each process Process
state
Program
counter
CPU
registers
CPU scheduling
information Memory-
management
information
Accounting
information
I/O status information

CPU Switch From Process to Process

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 19

Process Scheduling Queues

Job queue – set of all processes in the system
Ready queue – set of all processes residing in main memory, ready and
waiting to execute
Device queues – set of processes waiting
for an I/O device Processes migrate
among the various queues

Ready Queue and Various I/O Device Queues

Representation of Process Scheduling

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 20

Schedulers
 Long-term scheduler (or job scheduler) – selects which processes
should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU

Process Creation

Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other
processes, including sharing data Reasons for cooperating
processes:
Information
sharing
Computation
speedup

Communications Models

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 21

Cooperating Processes
Independent process cannot affect or be affected by the execution of
another process
Cooperating process can affect or be affected by the

execution of another process Advantages of process cooperation
Information
sharing
Computation
speed-up
Modularity
Convenience

 Threads

 To introduce the notion of a thread — a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems
To discuss the APIs for the Pthreads, Win32, and
Single and Multithreaded Processes

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 22

Linux Threads

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call
clone() allows a child task to share the address space of the parent task
(process)

CPU Scheduling
To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems To describe various CPU-
scheduling algorithms
To discuss evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system Maximum CPU utilization
obtained with multiprogramming
CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU
execution and I/O wait
CPU burst distribution

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 23

CPU Scheduler
Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them CPU scheduling decisions may take place
when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is
nonpreemptive All other
scheduling is preemptive

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their execution per time unit
Turnaround time – amount of time to execute a particular process
Waiting time – amount of time a process has been waiting in the ready
queue
Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)
Max CPU
utilization

First-Come, First-Served (FCFS) Scheduling
Process Burst Time
P1 24
P2 3
P3 3
Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

P1 P2 P3

0 24 27 30

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 24

Waiting time for P1 = 0; P2 =
24; P3 = 27 Average waiting
time: (0 + 24 + 27)/3 = 17
Suppose that the processes
arrive in the order

P2 , P3 , P1
The Gantt chart for the schedule is:nnnnWaiting time for P1 = 6; P2 = 0; P3 =
3nAverage waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

0 3 6 30
Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for
a given set of processes The difficulty is knowing
 Process Arrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

JF scheduling chart
average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

0 3 9 16 24

P2 P3 P1

P4 P1 P3 P2

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 25

her avera ge turnar ound tha n SJF, but better re spons

 Priority Scheduling
A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest priority (smallest
integer º highest priority)
Preempt
ive
nonpree
mptive
SJF is a priority scheduling where priority is the
predicted next CPU burst time Problem º Starvation –
low priority processes may never execute
Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-
100 milliseconds. After this time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)q time units.
Performance
q large Þ FIFO
q small Þ q must be large with respect to context switch, otherwise overhead
is too high

Example of RR with Time Quantum = 4
Process Burst Time
P1 24
P2 3
P3 3

The Gantt chart is:

Typically, hig

0 4 7 10 14 18 22 26 30

P1 P2 P3 P1 P1 P1 P1 P1

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 26

Time Quantum and Context Switch Time

Thread Scheduling
Distinction between user-level and kernel-level threads
Many-to-one and many-to-many models, thread library schedules user-
level threads to run on LWP Known as process-contention scope (PCS)
since scheduling competition is within the process Kernel thread
scheduled onto available CPU is system-contention scope (SCS) –
competition among all threads in system

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available
Homogeneous processors within a multiprocessor
Asymmetric multiprocessing – only one processor accesses the system
data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all
processes in common ready queue, or each has its own private queue of
ready processes
Processor affinity – process has affinity for processor on which it is
currently running

Multicore Processors
Recent trend to place multiple processor cores
on same physical chip Faster and consume less
power
Multiple threads per core also growing
Takes advantage of memory stall to make progress on another thread while
memory retrieve happens

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 27

Multithreaded Multicore System

Operating System

Examples
Solaris
scheduling
Windows XP
scheduling
Linux
scheduling

Solaris Scheduling

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 28

Windows XP Priorities

Linux Scheduling
Constant order O(1) scheduling time
Two priority ranges: time-sharing and real-time
Real-time range from 0 to 99 and nice value from 100 to 140

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 29

UNIT -3
CONCURRE
NCY

Process Synchronization
 To introduce the critical-section problem, whose solutions can be used
to ensure the consistency of shared data
To present both software and hardware solutions of the critical-section
problem
To introduce the concept of an atomic transaction and describe
mechanisms to ensure atomicity Concurrent access to shared data
may result in data inconsistency
Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the consumer-producer
problem that fills all the buffers. We can do so by having an integer count
that keeps track of the number of full buffers. Initially, count is set to 0. It
is incremented by the producer after it produces a new buffer and is
decremented by the consumer after it consumes a buffer

Peterson’s Solution

Two process solution
Assume that the LOAD and STORE instructions are atomic; that
is, cannot be interrupted. The two processes share two variables:
int turn;
Boolean
flag[2]

section
Synchronization Hardware

Many systems provide hardware support for
critical section code Uniprocessors – could
disable interrupts
Currently running code would execute
without preemption Generally too
inefficient on multiprocessor systems

Operating systems using this not broadly scalable
 Modern machines provide special atomic

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 30

Semaphore
Synchronization tool that does not require busy waiting
nSemaphore S – integer variable Two standard operations
modify S: wait() and signal()

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal ()
on the same semaphore at the same time

 Thus, implementation becomes the critical section problem where the wait
and signal code are placed in the crtical section.

 Could now have busy waiting in critical
section implementation But implementation code
is short
Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and
therefore this is not a good solution.

Deadlock and Starvation
 Deadlock – two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes
Let S and Q be two semaphores initialized to 1

Monitors
A high-level abstraction that provides a convenient and effective
mechanism for process synchronization Only one process may be active
within the monitor at a time
monitor monitor-name

spin locks

 System Model
Assures that operations happen as a single logical unit of work,
in its entirety, or not at all Related to field of database systems
Challenge is assuring atomicity despite computer system failures
Transaction - collection of instructions or operations that
performs single logical function Here we are concerned with
changes to stable storage – disk

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 31

Transaction is series of read and write operations
Terminated by commit (transaction successful) or abort (transaction
failed) operation Aborted transaction must be rolled back to undo any
changes it performed

Types of Storage Media
Volatile storage – information stored here does not
survive system crashes Example: main memory,
cache
Nonvolatile storage – Information
usually survives crashes Example: disk
and tape
Stable storage – Information never lost
Not actually possible, so approximated via replication or RAID to
devices with independent failure modes

 Goal is to assure transaction atomicity where failures cause loss of
information on volatile storage

Concurrent Transactions
Must be equivalent to serial execution
– serializability Could perform all
transactions in critical section
Inefficient, too restrictive
Concurrency-control algorithms provide serializability

Serializability

Consider two data items
A and B Consider
Transactions T0 and T1
Execute T0, T1
atomically Execution
sequence called
schedule

 Shivani Gupta (CS Department) Page 32

UNIT IV

Memory Management

To provide a detailed description of various ways of organizing memory
hardware
To discuss various memory-management techniques, including paging and
segmentation
To provide a detailed description of the Intel Pentium, which supports
both pure segmentation and segmentation with paging
Program must be brought (from disk) into memory and placed
within a process for it to be run Main memory and registers are only
storage CPU can access directly
Register access in one CPU
clock (or less) Main memory
can take many cycles
Cache sits between main memory and
CPU registers Protection of memory
required to ensure correct operation

Base and Limit Registers

A pair of base and limit registers define the logical address space

 Shivani Gupta (CS Department) Page 33

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages Compile time: If memory location
known a priori, absolute code can be generated; must recompile code if
starting location changes
Load time: Must generate relocatable code if memory location is not
known at compile time Execution time: Binding delayed until run time if
the process can be moved during its execution from one memory segment
to another. Need hardware support for address maps (e.g., base and limit
registers)

Multistep Processing of a User Program

 Shivani Gupta (CS Department) Page 34

Logical vs. Physical Address Space
 The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management
Logical address – generated by the CPU; also referred
to as virtual address Physical address – address seen
by the memory unit
Logical and physical addresses are the same in compile-time and load-
time address-binding schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical address
In MMU scheme, the value in the relocation register is added to every
address generated by a user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real
physical addresses

Dynamic relocation using a relocation register

Dynamic Loading

Routine is not loaded until it is called
Better memory-space utilization; unused routine is never loaded
Useful when large amounts of code are needed to handle infrequently
occurring cases
No special support from the operating system is required implemented
through program design

 Shivani Gupta (CS Department) Page 35

Dynamic Linking
Linking postponed until execution time
Small piece of code, stub, used to locate the appropriate
memory-resident library routine Stub replaces itself with the
address of the routine, and executes the routine
Operating system needed to check if routine is in
processes’ memory address Dynamic linking is
particularly useful for libraries
System also known as shared libraries

Swapping
A process can be swapped temporarily out of memory to a backing store, and
then brought back into memory for continued executionnBacking store – fast
disk large enough to accommodate copies of all memory images for all users;
must provide direct access to these memory imagesnRoll out, roll in –
swapping variant used for priority-based scheduling algorithms; lower-priority
process is swapped out so higher-priority process can be loaded and
executednMajor part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swappednModified versions of swapping
are found on many systems (i.e., UNIX, Linux, and Windows)
System maintains a ready queue of ready-to-run processes which have memory
images on disk

Schematic View of Swapping

 Shivani Gupta (CS Department) Page 36

 Contiguous Allocation

 Main memory usually into two partitions:
Resident operating system, usually held in low memory with interrupt vector
User processes then held in high memorynRelocation registers used to
protect user processes from each other, and from changing operating-
system code and data
Base register contains value of smallest physical address
Limit register contains range of logical addresses – each logical
address must be less than the limit register

 MMU maps logical address dynamically
Hardware Support for Relocation and Limit Registers

To run a program of size n pages, need to find n free
frames and load program Set up a page table to translate
logical to physical addresses
Internal fragmentation

Address Translation Scheme

Address generated by CPU is divided into
Page number (p) – used as an index into a page table which contains
base address of each page in physical memory

 Shivani Gupta (CS Department) Page 37

p

m - n n

 Page offset (d) – combined with base address to define the physical
memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

Paging Hardware

age number page offset

p d

Paging Model of Logical and Physical Memory

 Shivani Gupta (CS Department) Page 38

Paging Example

32-byte memory and 4-byte pages

Free Frames

 Shivani Gupta (CS Department) Page 39

Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) points to the page table
Page-table length register (PRLR) indicates size of the page table
In this scheme every data/instruction access requires two memory
accesses. One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special
fast-lookup hardware cache called associative memory or translation
look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB
entry – uniquely identifies each process to provide address-space
protection for that process

Associative Memory

Associative memory –
parallel search Address
translation (p, d)
If p is in associative register, get
frame # out Otherwise get frame #
from page table in memory

Page #
Frame #

Effective Access Time

Associative Lookup = e time unit
Assume memory cycle time is 1 microsecond
Hit ratio – percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

 Hit ratio = an Effective Access Time (EAT)

 Shivani Gupta (CS Department) Page 40

EAT = (1 + e) a + (2 + e)(1 – a)
= 2 + e – a

Memory Protection
Memory protection implemented by associating protection bit with each
frame
Valid-invalid bit attached to each entry in the page table:
“valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page “invalid” indicates that the page is not in the
process’ logical address space
Valid (v) or Invalid (i) Bit In A Page Table

 Shared Pages Shared code
 One copy of read-only (reentrant) code shared among processes (i.e.,
text editors, compilers, window systems).

 Shared code must appear in same location in the logical address space of all
processes

Private code and data
Each process keeps a separate copy of the code and data
The pages for the private code and data can appear anywhere in the logical
address space

 Shivani Gupta (CS Department) Page 79

Shared Pages Example

Structure of the Page Table

Hierarchical
Paging
Hashed Page
Tables
Inverted
Page Tables

Hierarchical Page Tables
Break up the logical address space into
multiple page tables A simple technique is
a two-level page table

 Shivani Gupta (CS Department) Page 80

Two-Level Page-Table Scheme

Two-Level Paging Example

A logical address (on 32-bit machine with 1K page
size) is divided into: a page number consisting of
22 bits
a page offset consisting of 10 bits
Since the page table is paged, the page number is further divided into:
a 12-bit page
number a 10-
bit page
offset
Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

p

12 10 10

Hashed Page Tables

Common in address spaces > 32 bits

age number page offset

pi p2 d

 Shivani Gupta (CS Department) Page 81

The virtual page number is hashed into a page table
This page table contains a chain of elements
hashing to the same location Virtual page numbers
are compared in this chain searching for a match
If a match is found, the corresponding physical frame is extracted

Hashed Page Table

Inverted Page Table

One entry for each real page of memory
Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that page

 Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs
Use hash table to limit the search to one — or at most a few — page-table
entries

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 82

Inverted Page Table Architecture

Segmentation
Memory-management scheme that supports

user view of memory A program is a
collection of segments
A segment is a logical
unit such as: main
program
procedure
function
method
object
local variables,
global variables
common block
stack
symbo
l table
arrays

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 83

4

3

2

1

Logical View of Segmentation

user space

Segmentation Architecture
 Logical address consists of a two tuple:

o <segment-number, offset>,
Segment table – maps two-dimensional physical adpdrhesysess;iecaachl tambleeemntroy
rhyas:space
base – contains the starting physical address where the segments reside in
memory
limit – specifies the length of the segment
Segment-table base register (STBR) points to the segment table’s location
in memory
Segment-table length register (STLR) indicates number of

segments used by a program; segment number s is legal if s < STLR
Protection
With each entry in segment table associate:

validation bit = 0 Þ

1

4

2

3

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 84

Segmentation Hardware

Example of Segmentation

Example: The Intel Pentium

Supports both segmentation and
segmentation with paging CPU generates
logical address
Given to segmentation unit

Which produces
linear addresses Linear
address given to paging unit

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 85

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 86

Pentium Paging Architecture

Linear Address in Linux

Three-level Paging in Linux

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 87

UNIT – 5

VIRTUAL MEMORY

Objective
 To describe the benefits of a virtual memory system.

 To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames.

 To discuss the principle of the working-set model.

Virtual Memory
 Virtual memory is a technique that allows the execution of process that
may not be completely in memory. The main visible advantage of this
scheme is that programs can be larger than physical memory.

 Virtual memory is the separation of user logical memory from physical
memory this separation allows an extremely large virtual memory to be
provided for programmers when only a smaller physical memory is
available (Fig).

 Following are the situations, when entire program is not required to load
fully.
1. User written error handling routines are used only when an error occurs in

the data or computation.
2. Certain options and features of a program may be used rarely.
3. Many tables are assigned a fixed amount of address space even though

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 88

only a small amount of the table is actually used.
 The ability to execute a program that is only partially in memory would

counter many benefits.
1. Less number of I/O would be needed to load or swap each user program into

memory.
2. A program would no longer be constrained by the amount of physical

memory that is available.
3. Each user program could take less physical memory, more programs could

be run the same time, with a corresponding increase in CPU utilization and
throughput.

1. We check an internal table for this process to determine whether the
reference was a valid or invalid memory access.

2. If the reference was invalid, we terminate the process. If .it was valid, but
we have not yet brought in that page, we now page in the latter.

3. We find a free frame.

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with the
process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the illegal address trap.
The process can now access the page as though it had always been memory.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 89

Therefore, the operating system reads the desired page into memory and

restarts the process as though the page had always been in memory.

The page replacement is used to make the frame free if they are not in used.
If no frame is free then other process is called in.

Page Replacement Algorithm

There are many different page replacement algorithms. We evaluate an
algorithm by running it on a particular string of memory reference and
computing the number of page faults. The string of memory references is called
reference string. Reference strings are generated artificially or by tracing a given
system and recording the address of each memory reference. The latter choice
produces a large number of data.

1. For a given page size we need to consider only the page number, not the entire

address.

2. if we have a reference to a page p, then any immediately following
references to page p will never cause a page fault. Page p will be in memory
after the
first reference; the immediately following references will not fault.

Eg:- consider the address sequence

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,
0104, 0101, 0610, 0102,

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 90

0103, 0104, 0104, 0101, 0609, 0102, 0105
and reduce to 1, 4, 1, 6,1, 6, 1, 6, 1, 6, 1

To determine the number of page faults for a particular reference string and

page replacement algorithm, we also need to know the number of page frames
available. As the number of frames available increase, the number of page faults
will decrease.

FIFO Algorithm

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO

replacement algorithm associates with each page the time when that page was
brought into memory. When a page must be replaced, the oldest page is chosen.
We can create a FIFO queue to hold all pages in memory.

The first three references (7, 0, 1) cause page faults, and are brought into
these empty eg. 7, 0, 1, 2, 0, 3,

0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 and consider 3 frames. This replacement means that
the next reference to 0 will fault. Page 1 is then replaced by page 0.

Optimal Algorithm

An optimal page-replacement algorithm has the lowest page-fault rate of all

algorithms. An optimal page-replacement algorithm exists, and has been called
OPT or MIN. It is simply

Replace the page that will not be used
for the longest period of time.

Now consider the same string with 3 empty frames.
The reference to page 2 replaces page 7, because 7 will not be used until

reference 15, whereas page 0 will be used at 5, and page 1 at 14. The reference
to page 3 replaces page 1, as page 1 will be the last of the three pages in
memory to be referenced again. Optimal replacement is much better than a FIFO.

The optimal page-replacement algorithm is difficult to implement, because

it requires future knowledge of the reference string.

LRU Algorithm

The FIFO algorithm uses the time when a page was brought into
memory; the OPT algorithm uses the time when a page is to be used. In LRU
replace the page that has not been used for the longest period of time.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 91

LRU Approximation Algorithms

Some systems provide no hardware support, and other page-replacement
algorithm. Many systems provide some help, however, in the form of a reference
bit. The reference bit for a page is set, by the hardware, whenever that page is
referenced. Reference bits are associated with each entry in the page table
Initially, all bits are cleared (to 0) by the operating system. As a user process
executes, the bit associated with each page referenced is set (to 1) by the
hardware.

Additional-Reference-Bits Algorithm

The operating system shifts the reference bit for each page into the high-

order or of its 5-bit byte, shifting the other bits right 1 bit, discarding the low-
order bit.

These 5-bit shift registers contain the history of page use for the last eight
time periods. If the shift register contains 00000000, then the page has not been

used for eight time periods; a page that is used at least once each period would
have a shift register value of 11111111.

Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement

algorithm. When a page gets a second chance, its reference bit is cleared and its
arrival e is reset to the current time.

Enhanced Second-Chance Algorithm

The second-chance algorithm described above can be enhanced by
considering troth the reference bit and the modify bit as an ordered pair.

1. (0,0) neither recently used nor modified best page to replace.
2. (0,1) not recently used but modified not quite as good, because the page
will need to be written out before replacement.
3. (1,0) recently used but clean probably will be used again soon.
4. (1,1) recently used and modified probably will be used again, and write
out will be needed before replacing it

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 92

Counting Algorithms

There are many other algorithms that can be used for page replacement.

• LFU Algorithm: The least frequently used (LFU) page-replacement algorithm
requires that the page with the smallest count be replaced. This algorithm suffers
from the situation in which a page is used heavily during the initial phase of a
process, but then is never used again.

• MFU Algorithm: The most frequently used (MFU) page-replacement
algorithm is based on the argument that the page with the smallest count was
probably just brought in and has yet to be used.

Page Buffering Algorithm

When a page fault occurs, a victim frame is chosen as before. However,
the desired page is read into a free frame from the pool before the victim is
written out.
This procedure allows the process to restart as soon as possible, without waiting
for the victim page to be written out. When the victim is later written out, its
frame is added to the free-frame pool.

When the FIFO replacement algorithm mistakenly replaces a page
mistakenly replaces a page that is still in active use, that page is quickly retrieved
from the free-frame buffer, and no I/O is necessary. The free-frame buffer
provides protection against the relatively poor, but simple, FIFO replacement
algorithm.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 93

UNIT VI

Principles of deadlock

To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks.To present a number of different methods
for preventing or avoiding deadlocks in a computer system
The Deadlock Problem

A set of blocked processes each holding a resource and waiting to acquire a
resource held by another process in the set
Example
System has 2 disk drives
P1 and P2 each hold one disk drive and each
needs another one Example
semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

Bridge Crossing Example

Traffic only in one direction
Each section of a bridge can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs up

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 94

(preempt resources and rollback) Several cars may have to be
backed up if a deadlock occurs
Starvation is possible
Note – Most OSes do not prevent or deal with deadlocks

System Model
Resource types R1, R2, . . ., Rm
CPU cycles, memory space,
I/O devices Each resource
type Ri has Wi instances.
Each process utilizes a
resource as follows:
re
qu
est
us
e
rel
eas
e

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously
Mutual exclusion: only one process at a time can use a resource
Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes
No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task
Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.
n
Resource-Allocation Graph

A set of vertices V and a set of edges E

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 95

V is partitioned into two types:
P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system R = {R1, R2, …, Rm}, the set
consisting of all resource types in the system request
edge – directed edge P1 ® Rj
assignment edge – directed edge Rj ® Pi

Process

Resource Type with 4 instances

Pi requests instance of Rjn

Rj

Pi

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 96

Pi

Pi is holding an instance of Rj

Rj

Example of a Resource Allocation Graph

Graph With A Cycle But No Deadlock

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 97

Basic Facts
If graph contains no cycles Þ no deadlocknIf graph contains a cycle Þlif only
one instance per resource type, then deadlock
if several instances per resource type, possibility of deadlock
Methods for Handling Deadlocks
Ensure that the system will never enter a deadlock statenAllow the system to
enter a deadlock state and then recovernIgnore the problem and pretend that
deadlocks never occur in the system; used by most operating systems,
including UNIX
Deadlock Prevention
Restrain the ways request can be made
Mutual Exclusion – not required for sharable resources; must hold for
nonsharable resources
Hold and Wait – must guarantee that whenever a process requests a
resource, it does not hold any other resources
Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process has
none
Low resource utilization; starvation possible
No Preemption –
If a process that is holding some resources requests another resource that cannot
be immediately allocated to it, then all resources currently being held are
released
Preempted resources are added to the list of resources for which the process is
waiting
Process will be restarted only when it can regain its old resources, as well as the
new ones that it is requesting Circular Wait – impose a total ordering of all
resource types, and require that each process requests resources in an increasing
order of enumeration

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 98

Deadlock Avoidance
Requires that the system has some additional a
priori information available
Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need
The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition
Resource-allocation state is defined by the number of available and allocated
resources, and the maximum demands of the processes
Safe State
When a process requests an available resource, system must decide if immediate
allocation leaves the system in a safe state
System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the
processes is the systems such that for each Pi, the resources that Pi can still
request can be satisfied by currently available resources + resources held by all
the Pj, with j < inThat is:
If Pi resource needs are not immediately available, then Pi can wait until all Pj
have finished
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate When Pi terminates, Pi +1 can obtain its
needed resources, and so on
Basic Facts
If a system is in safe state Þ no deadlocksnIf a system is in unsafe state Þ
possibility of deadlocknAvoidance Þ ensure that a system will never enter an
unsafe state.
Safe, Unsafe , Deadlock State

Avoidance
algorithms Single
instance of a resource
type Use a resource-
allocation graph
Multiple instances of a
resource type Use the
banker’s algorithm

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 99

Resource-Allocation Graph Scheme
nClaim edge Pi ® Rj indicated that process Pj may request resource Rj;
represented by a dashed linenClaim edge converts to request edge when a process
requests a resourcenRequest edge converted to an assignment edge when the
resource is allocated to the process
nWhen a resource is released by a process, assignment edge reconverts to a
claim edgenResources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 100

UNIT VII

FILE SYSTEM INTERFACE
The Concept Of a File
A file is a named collection of related information that is recorded on secondary
storage. The information in a file is defined its creator. Many different types of
information may be stored in a file.
File attributes:-
A file is named and for the user’s convince is referred to by its name. A name is
usually a string of characters. One user might create file, where as another user might
edit that file by specifying its name. There are different types of attributes.
1) name:- the name can be in the human readable form.
2) type:- this information is needed for those systems that support different types.
3)location:- this information is used to a device and to the location of the file on that
device.
4)size:- this indicates the size of the file in bytes or words. 5)protection:-
6)time,date, and user identifications:-
the information about all files is kept in the directory structure, that also resides on
secondary storage.
File operations:- Creating a file:-
Two steps are necessary to create a file first, space in the file system must be found for
the file. Second , an entry for the new file must be made in the directory. The
directory entry records the name of the file and the location in the system.
Writing a file:-
To write a file give the name of the file, the system search the directory to find the
location of the file. The system must keep the writer pointer to the location in the file
where the next write is to take place. The write pointer must be updated whenever a
write occurs.
Reading a file:- to read from a file, specifies the name of the file and directory is
search for the associated directory entry, and the system needs to keep read pointer to
the location in the file where the next read is to take place. Once the read has taken
place, read pointer is updated.
Repositioning with in a file:-
The directory is searched for the appropriate entry and the current file position is set
to given value. this is also known as a file seek.
Deleting a file:- to delete a file , we search the directory for the name file. Found that
file in the directory entry, we release all file space and erase the directory entry.
Truncate a file:- this function allows all attributes to remain unchanged(except for
file length) but for the file to be reset to length zero.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 101

Appending:- add new information to the end of an existing file .
Renaming:- give new name to an existing file.
Open a file:-if file need to be used, the first step is to open the file, using the open
system call.
Close:- close is a system call used to terminate the use of an already used file.

File Types:-
A common technique for implementing file type is to include the type as part of the
file name. The name is split in to two parts
1) the name 2) and an extension .
the system uses the extension to indicate the type of the file and the type of operations
that can be done on that file.

 : ACCESSMETHODS:-
There are several ways that the information in the file can be accessed. 1)sequential
method 2) direct access method 3) other access methods. 1)sequential access
method:-
the simplest access method is S.A. information in the file is processed in order, one
after the other. the bulk of the operations on a file are reads & writes. It is based on a
tape model of a file. Fig 10.3
2) Direct access:- or relative access:-
a file is made up of fixed length records, that allow programs to read and write record
rapidly in no particular order. For direct access, file is viewed as a numbered sequence
of blocks or records. A direct access file allows, blocks to be read & write. So we may
read block15, block 54 or write block10. there is no restrictions on the order of
reading or writing for a direct access file. It is great useful for immediate access to
large amount of information.
The file operations must be modified to include the block number as a parameter. We
have read n, where n is the block number.
3) other access methods:-
the other access methods are based on the index for the file. The indexed
contain pointers to the various blocks. To find an entry in the file , we first
search the index and then use the pointer to access the file directly and to find
the desired entry. With large files. The index file itself, may become too large
to be kept in memory. One solution is to create an index for the index file. The
primary index file would contain pointers to secondary index files which would
point to the actual data iteams

 Directory Structures:-
operations that are be on a directory (read in text book)
single level directory:-

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 102

the simple directory structure is the single level directory. All files are contained in
the same directory. Which is easy to understand. Since all files are in same
directory, they must have unique names.
In a single level directory there is some limitations. When the no.of files
increases or when there is more than one user some problems can occurs. If the
no.of files increases, it becomes difficult to remember the names of all the files.
FIG 10.7 Two-level directory:-
The major disadvantages to a single level directory is the confusion of file names
between different users. The standard solution is to create separate directory for
each user.
In 2-level directory structure, each user has her own user file directory(ufd). Each
ufd has a similar structure, the user first search the master file directory . the mfd is
indexed by user name and each entry point to the ufd for that user.fig 10.8

 :File System Mounting
A file system must be mounted before it can be accessed
A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

(a) Existing. (b) Unmounted Partition

(b)

Mount Point

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 103

FILE SYSTEM IMPLEMENTATION
 :File allocation methods:-
There are 3 major methods of allocating disk space.
1) Contiguous allocation:-
1) The contiguous allocation method requires each file
to occupy a set of contiguous block on the disk.
2) Contiguous allocation of a file is defined by the disk address and length of the
first block. If the file is ‘n’ block long and starts at location ‘b’ , then it occupies
blocks b,b+1,b+2,…..,b+n-1;
3) The directory entry for each file indicates the address of the starting block and
length of the area allocated for this file. Fig 11.3
4) Contiguous allocation of file is very easy to access. For the sequential access ,
the file system remembers the disk address of the last block referenced and,
when necessary read next block. For direct access to block ‘i’ of a file that starts
at block ‘b’ , we can immediately access block b+i. Thus both sequential and
direct access can be supported by contagious allocation.
5) One difficulty with this method is finding space for a new file.
6) Also there are many problems with this method
a) external fragmentation:- files are allocated and deleted , the free disk space is
broken in to little pieces. The E.F exists when free space is broken in to
chunks(large piece) and these chunks are not sufficient for a request of new file.
There is a solution for E.F i.e compaction. All free space compact in to one
contiguous space. But the cost of compaction is time.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 104

b) Another problem is determining how much space is needed for a file. When file
is created the creator must specifies the size of
that file. This becomes to big problem. Suppose if we allocate too little space to a
file , some times it may not sufficient.
Suppose if we allocate large space some times space is wasted.
c) Another problem is if one large file is deleted, that large space is becomes to
empty. Another file is loaded in to that space whose size is very small then some
space is wasted . that wastage of space is called internal fragmentation.
2) Linked allocation:-
1) Linked allocation solves all the problems of contagious allocation. With linked
allocation , each file is a linked list of disk blocks, the disk block may be
scattered any where on the disk.
2) The directory contains a pointer to the first and last blocks of the file. Fig11.4
Ex:- a file have five blocks start at block 9, continue at block 16,then block 1,
block 10 and finally block 25. each block contains a ponter to the next block.
These pointers are not available to the user.
3) To create a new file we simply creates a new entry in directory. With linked
allocation, each directory entry has a pointer to the first disk block of the file.
3) There is no external fragmentation with linked allocation. Also there is no need
to declare the size of a file when that file is created. A file can continue to grows as
long as there are free blocks.

4) But it have disadvantage. The major problem is that it can be used only for
sequential access-files.
5) To find the I th block of a file , we must start at the beginning of that file, and
follow the pointers until we get to the I th block. It can not support the direct
access.
6) Another disadvantage is it requires space for the pointers. If a pointer requires 4
bytes out of 512 byte block, then 0.78% of disk is being used for pointers, rather
than for information.
7) The solution to this problem is to allocate blocks in to multiples, called clusters
and to allocate the clusters rather than blocks.
8) Another problem is reliability. The files are linked together by pointers
scattered all over the disk what happen if a pointer were lost or damaged. FAT(
file allocation table):-
An important variation on the linked allocation method is the use of a file
allocation table.
The table has one entry for each disk block, and is indexed by block number. The

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 105

FAT is used much as is a linked list.
The directory entry contains the block number of the first block of the file. The
table entry contains the block number then contains the block number of the next
block in the file. This chain continuous until the last block, which has a special
end of file values as the table entry. Unused blocks are indicated by a ‘0’ table
value. Allocation a new block to a file is a simple. First finding the first 0-value
table entry, and replacing the previously end of file value with the address of the
new block. The 0 is then replaced with end of file value.
Fig 11.5
3)Indexed allocation:-
1) linked allocation solves the external fragmentation and size declaration
problems of contagious allocation. How ever in the absence of a FAT , linked
allocation can not support efficient direct access.
2) The pointers to the blocks are scattered with the blocks themselves all over the
disk and need to be retrieved in order.
3) Indexed allocation solves this problem by bringing all the pointers together in to
one location i.e the index block.
4) Each file has its own index block ,which is an array of disk block addresses.
The I th entry in the index block points to the ith block of the file.
5) The directory contains the address of the index block. Fig 11.6
To read the ith block we use the pointer in the ith index block entry to find and
read the desired block.
6) When the file is created, all pointers in the index block are set to nil. When the
ith block is first written, a block is obtained from the free space manager, and
its address is put in the ith index block entry.
7) It supports the direct access with out suffering from external fragmentation, but
it suffer from the wasted space. The pointer overhead of the index block is
generally greater than the pointer over head of linked allocation.

 :Free space management:-
1) to keep track of free disk space, the system maintains a free space list. The free
space list records all disk blocks that are free.
2) To create a file we search the free space list for the required amount of space,
and allocate that space to the new file. This space is then removed from the free
space list.
3) When the file is deleted , its disk space is added to the free space list. There are
many methods to find the free space.
1) bit vector:-
The free space list is implemented as a bit map or bit vector. Each block is
represented by 1 bit. If the block is free the bit is 1 if the block is allocated the bit

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 106

is 0.
Ex:- consider a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25, are free and
rest of blocks are allocated the free space bit map would be
001111001111110001100000010000……..
the main advantage of this approach is that it is relatively simple and efficient to
find the first free block or ‘n’ consecutive free blocks on the disk
2) Linked list:-
Another approach is to link together all the free disk blocks, keeping a pointer
to the first free block in a special location on the disk and caching it in memory.
This first block contain a pointer to the next free disk block, and so on.
How ever this scheme is not efficient to traverse the list, we must read each block,
which requires I/O time.
Disk space is also wasted to maintain the pointer to next free space.
3) Grouping:-
Another method is store the addresses of ‘n’ free blocks in the first free block.
The first (n-1) of these blocks are actually free. The last block contains the
addresses of another ‘n’ free blocks and so on. Fig 11.8
Advantages:- the main advantage of this approach is that the addresses of a large
no.of blocks can be found quickly.
4) Counting:-
Another approach is counting. Generally several contiguous blocks may be
allocated or freed simultaneously. Particularly when space is allocated with the
contiguous allocation algorithm rather than keeping a list of ‘n’ free disk address.
We can keep the address of first free block and the number ‘n’ of free contiguous
blocks that follow the first block. Each entry in the free space list then consists of
a disk address and a count.

 :Directory Implementation:-
1) Linear list:-
1) the simple method of implement ting a directory is to use a linear list of file
names with pointers to the data blocks.
2) A linear list of directory entries requires a linear search to find a particular
entry.
3) This method is simple to program but is time consuming to execute.
4) To create a new file, we must first search the directory to be sure that no
existing file has the same name. Then, we add a new entry at the end of the
directory.
5) To delete a file we search the directory for the named file, then release the space
allocated to it.
6) To reuse directory entry, we can do one of several things.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 107

7) We can mark the entry as unused or we can attach it to a list of free directory
entries.
Disadvantage:- the disadvantage of a linear list of directory entries is the linear
search to find a file.

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 108

UNIT VIII

MASS-STORAGE STRUCTURE
Mass-Storage Systems
nDescribe the physical structure of secondary and tertiary storage devices and the
resulting effects on the uses of the devicesnExplain the performance
characteristics of mass-storage devicesnDiscuss operating-system services
provided for mass storage, including RAID and HSM
:Overview of Mass Storage Structure
Magnetic disks provide bulk of secondary storage of modern computers Drives
rotate at 60 to 200 times per second
Transfer rate is rate at which data flow between drive and computer
Positioning time (random-access time) is time to move disk arm to desired
cylinder (seek time) and time for desired sector to rotate under the disk head
(rotational latency) Head crash results from disk head making contact with the
disk surface
That’s bad
Disks can be removable
Drive attached to computer via I/O bus
Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI
Host controller in computer uses bus to talk to disk controller built into drive or
storage array
Moving-head Disk Mechanism

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 109

Magnetic tape
Was early secondary-storage medium
Relatively permanent and holds large quantities of data Access time slow
Random access ~1000 times slower than disk
Mainly used for backup, storage of infrequently-used data, transfer medium
between systems
Kept in spool and wound or rewound past read-write head Once data under head,
transfer rates comparable to disk 20-200GB typical storage
Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT
:Disk Structure
Disk drives are addressed as large 1-dimensional arrays of logical
blocks, where the logical block is the smallest unit of transfernThe 1-dimensional
array of logical blocks is mapped into the sectors of the disk sequentially
Sector 0 is the first sector of the first track on the outermost cylinder
Mapping proceeds in order through that track, then the rest of the tracks in that
cylinder, and then through the rest of the cylinders from outermost to innermost
8.3:Disk Attachment
Host-attached storage accessed through I/O ports talking to I/O busses SCSI itself
is a bus, up to 16 devices on one cable, SCSI initiator requests operation and SCSI
targets perform tasks
Each target can have up to 8 logical units (disks attached to device controller FC

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 110

is high-speed serial architecture
Can be switched fabric with 24-bit address space – the basis of storage area
networks (SANs) in which many hosts attach to many storage units
Can be arbitrated loop (FC-AL) of 126 devices
Network-Attached Storage
Network-attached storage (NAS) is storage made available over a network rather
than over a local connection (such as a bus)
NFS and CIFS are common protocols
Implemented via remote procedure calls (RPCs) between host and storage New
iSCSI protocol uses IP network to carry the SCSI protocol

Storage Area Network
Common in large storage environments (and becoming more common) Multiple
hosts attached to multiple storage arrays – flexible

:Disk Scheduling
The operating system is responsible for using hardware efficiently — for the disk
drives, this means having a fast access time and disk bandwidth
Access time has two major components
Seek time is the time for the disk are to move the heads to the cylinder containing
the desired sector

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 111

Rotational latency is the additional time waiting for the disk to rotate the desired
sector to the disk head
Minimize seek time
Seek time » seek distance
Disk bandwidth is the total number of bytes transferred, divided by the total time
between the first request for service and the completion of the last transfer
Several algorithms exist to schedule the servicing of disk I/O requests nWe
illustrate them with a request queue (0-199)
98, 183, 37, 122, 14, 124, 65, 67
Head pointer 53
FCFS
Illustration shows total head movement of 640 cylinders

SSTF
Selects the request with the minimum seek time from the current head position
SSTF scheduling is a form of SJF scheduling; may cause starvation of some
requests
nIllustration shows total head movement of 236 cylinders
SCAN
The disk arm starts at one end of the disk, and moves toward the other end,
servicing requests until it gets to the other end of the disk, where the head
movement is reversed and servicing continues.nSCAN algorithm Sometimes
called the elevator algorithm

Illustration shows total head movement of 208 cylinders
C-SCAN
Provides a more uniform wait time than SCAN
The head moves from one end of the disk to the other, servicing requests as it
goes
When it reaches the other end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip
Treats the cylinders as a circular list that wraps around from the last cylinder to
the first one
C-LOOK
Version of C-SCAN
Arm only goes as far as the last request in each direction, then reverses direction
immediately, without first going all the way to the end of the disk Selecting a

CS Department 2nd Year / 4th Sem

 Shivani Gupta (CS Department) Page 112

Disk-Scheduling Algorithm
SSTF is common and has a natural appeal
SCAN and C-SCAN perform better for systems that place a heavy load on the disk
Performance depends on the number and types of requests
Requests for disk service can be influenced by the file-allocation method The
disk-scheduling algorithm should be written as a separate module of the
operating system, allowing it to be replaced with a different algorithm if necessary
Either SSTF or LOOK is a reasonable choice for the default algorithm
Disk Management
Low-level formatting, or physical formatting — Dividing a disk into sectors that
the disk controller can read and write
To use a disk to hold files, the operating system still needs to record its own data
structures on the disk
Partition the disk into one or more groups of cylinders Logical formatting or
“making a file system”
To increase efficiency most file systems group blocks into clusters
Disk I/O done in blocks
File I/O done in clusters Boot block initializes system
The bootstrap is stored in ROM Bootstrap loader program
Methods such as sector sparing used to handle bad blocks
Tertiary Storage Devices
Low cost is the defining characteristic of tertiary storagenGenerally, tertiary
storage is built using removable medianCommon examples of removable media
are floppy disks and CD-ROMs; other types are available
Removable Disks
Floppy disk — thin flexible disk coated with magnetic material, enclosed in a
protective plastic caselMost floppies hold about 1 MB; similar technology is used
for removable disks that hold more than 1 GB
Removable magnetic disks can be nearly as fast as hard disks, but they are at a
greater risk of damage from exposure

	COMPUTER SYSTEM AND OPERATING SYSTEM OVERVIEW
	OVER VIEW OF OPERATING SYSTEM
	Computer System Structure
	Four Components of a Computer System
	Computer Startup
	Computer System Organization
	Computer-System Operation
	Common Functions of Interrupts
	polling
	Interrupt Timeline
	Direct Memory Access Structure
	Storage Structure
	Storage Hierarchy
	Caching
	Computer-System Architecture
	Operating-System Operations
	Transition from User to Kernel Mode
	Process Management
	Memory management activities
	Storage Management
	OS activities include
	Mass-Storage Management
	I/O Subsystem
	Protection and Security
	Peer-to-Peer Computing
	Web-Based Computing
	Open-Source Operating Systems
	Operating System Services
	A View of Operating System Services
	User Operating System Interface - GUI
	Layered Operating System
	Mac OS X Structure
	Solaris Modular Approach

	UNIT -2
	Process Concept
	Process in Memory
	Diagram of Process State
	CPU Switch From Process to Process
	Process Creation
	Interprocess Communication
	Communications Models
	Linux Threads
	CPU Scheduling
	Scheduling Criteria
	First-Come, First-Served (FCFS) Scheduling

	0 24 27 30
	0 3 6 30
	Shortest-Job-First (SJF) Scheduling

	0 3 9 16 24
	Round Robin (RR)
	Example of RR with Time Quantum = 4

	0 4 7 10 14 18 22 26 30
	Multiple-Processor Scheduling
	Multithreaded Multicore System
	UNIT -3 CONCURRENCY
	Process Synchronization
	Peterson’s Solution
	Synchronization Hardware
	Semaphore
	Semaphore Implementation
	Deadlock and Starvation
	Monitors
	System Model
	Types of Storage Media
	Concurrent Transactions
	Serializability

	UNIT IV
	Base and Limit Registers
	Binding of Instructions and Data to Memory
	Multistep Processing of a User Program
	Memory-Management Unit (MMU)
	Dynamic relocation using a relocation register
	Dynamic Linking
	Swapping
	Schematic View of Swapping
	Hardware Support for Relocation and Limit Registers
	Address Translation Scheme
	Free Frames
	Associative Memory
	Memory Protection
	Private code and data
	Shared Pages Example
	Hierarchical Page Tables
	Two-Level Page-Table Scheme

	p
	Hashed Page Table
	Inverted Page Table
	Inverted Page Table Architecture

	user space
	Segmentation Architecture
	Segmentation Hardware
	Example: The Intel Pentium
	UNIT – 5
	Objective
	Virtual Memory
	Page Replacement Algorithm
	FIFO Algorithm
	Optimal Algorithm
	LRU Algorithm
	LRU Approximation Algorithms
	Additional-Reference-Bits Algorithm
	Second-Chance Algorithm
	Enhanced Second-Chance Algorithm
	Counting Algorithms
	Page Buffering Algorithm

	UNIT VI
	The Deadlock Problem
	Bridge Crossing Example
	System Model
	Deadlock Characterization
	Deadlock can arise if four conditions hold simultaneously

	Resource-Allocation Graph
	A set of vertices V and a set of edges E

	Methods for Handling Deadlocks
	Deadlock Prevention
	No Preemption –

	Deadlock Avoidance
	Safe State
	Basic Facts
	Safe, Unsafe , Deadlock State
	Resource-Allocation Graph Scheme

	UNIT VII
	The Concept Of a File
	:File System Mounting

	UNIT VIII
	Mass-Storage Systems
	:Overview of Mass Storage Structure
	Moving-head Disk Mechanism

	:Disk Structure
	Network-Attached Storage
	Storage Area Network

	:Disk Scheduling
	FCFS
	SSTF
	SCAN
	C-SCAN
	C-LOOK
	Disk Management
	Tertiary Storage Devices
	Removable Disks

